Senin, 24 September 2012

MINYAK DAN LEMAK


Minyak dan Lemak
Minyak dan lemak berperan sanagat penting dalam gizi kita terutama karena merupakan sumber energy, cita rasa,serta sumber vitamin A,D, E dan K. Manusia dapat digolongkan mahluk omnivora, artinya makanannya terdiri dari bahan hewani maupun nabati, karena itu dapat manerima minyak dan lemak dari berbagai sumber baik ternak maupun tanaman. Minyak merupakan jenis makanan yang paling padat energy, yaitu mengandung 5 kkal per gram atau 37 kilojoul per gram. Pada umumnya proporsi minyak dan lemak yang dikosumsi ada kaitannya dengan tingkat ekonomi suatu Negara. Dinegara – Negara yang telah maju teknologinya jumlah konsumsi lemak umumnya tinggi, sebaliknya di Negara – Negara yang penghasilannya terbatas pada hasil pertanian, jumlah konsumsi lemaknya rendah.
Lemak dan minyak merupakan zat makanan yang penting untuk menjaga kesehatan tubuh manusia.Selain itu leak dan minyak juga merupakan sumber energi yang lebih efektif dibanding dengan karbohidrat dan protein. Satu gram minyak atau lemak dapat menghasilkan 9 kkal, sedangkan karbohidrat dan protein hanya menghasilkan 4 kkal/gram. Minyak atau lemak, khususnya minyak nabati, mengandung asam-asam lemak esensial seperti asam linoleat, lenolenat dan arakidonat yang dapat mencegah penyempitan pembuluh darah akibat penumpukan kolestrol. Minyak dan lemak juga berfungsi sebagai sumber dan pelarut bagi vitamin-vitamin A, D, E, dan K. Lemak dan minyak terdapat pada hampir semua bahan pangan dengan kandungan yang berbeda-beda. Tetapi lemak dan minyak sering kali ditambahkan dengan sengaja ke bahan makanan dengan berbagai tujuan. Dalam pengolahan bahan pangan, minyak dan lemak berfungsi sebagai media penghantar panas, seperti minyak goring, shortening (mentega putih), lemak (gajih), mentega, dan margarine.
Di samping itu, penambahan lemak juga dimaksudkan juga untuk menambah kalori serta memperbaiki tekstur dan citarasa bahan pangan. Seperti pada kembang gula, penambahan shortening pada pembuatan kue-kue, dan lain-lain. Lemak yang ditambahkan kedalam bahan pangan, atau dijadikan bahan pangan membutuhkan persyaratan dan sifat-sifat tertentu. Berbagai bahan pangan seperti daging, ikan, telur, susu, alpokat, kacang tanah, dan beberapa jenis sayuran mengandung lemak atau minyak yang biasanya termakan bersama bahan tersebut. Lemak dan minyak tersebut dikenal sebagai lemak tersembunyi (invisibkefat). Sedangkan lemak dan minyak yang telah diekstraksi dari ternak atau bahan nabati dan dimurnikan dikenal sebagai lemak minyak biasa atau lemak kasat mata (visible fat). Lemak hewani mengandung banyak sterol yang disebut kolestrol, sedangkan lemak nabati mengandung fitosterol dan lebih banyak mengandung asam lemak tak jenuh sehingga umumnya berbentuk cair. Lemak hewani ada yang berbentuk padat (lemak) yang biasanya berasal dari lemak hewan darat seperti lemak susu, lemak babi, lemak sapi.
Pembentukan Lemak secara Alami
Hampir semua bahan banyak mengandung lemak dan minyak, terutama bahan yang berasal dari hewan. Lemak dalam jaringan hewan terdapat pada jaringan adiposa. Dalam tanaman, lemak disintesis dari satu molekul gliserol dengan tiga molekul asam lemak yang terbentuk dari kelanjutan oksidasi karbohidrat dalam proses respirasi. Proses pembentukan lemak dalam tanaman dapat dibagi menjadi tiga tahap, yaitu pembentukan gliserol, pembentukan molekul asam lemak, kemudian kondensasi asam lemak dengan gliserol membentuk lemak.
Minyak pangan dalam bahan pangan biasanya diekstraksi dalam keadaan tidak murni dan bercampur dengan komponen-komponen lain yang disebut fraksilipida. Fraksi lipida terdiri dari minyak/lemak (edibleflat/oil), malam (wax) fosfolipida, sterol, hidrokarbon, dan pigmen. Dengan cara ekstraksi yang menggunakan pelarut lemak, seperti potroleum eter, etil eter, benzene, dan kloroform komponen-komponen fraksilipida dapat dipisahkan. Lemak kasar (crude fat) tersebut disebut fraksi larut eter. Untuk membedakan komponen-komponen fraksi lipida dipergunakan NaOH. Minyak/lemak makan, malam, dan fosflipida dapat disabunkan dengan NaOH. Sedangkan sterol, hidrokarbon, dan pigmen adalah fraksi yang tidak tersabunkan. Kandungan lemak dalam bahan pangan adalah lemak kasar dan merupakan kandungan total lipida dalam jumlah yang sebenarnya.
Komposisi dan Sifat
Lemak dan minyak termasuk dalam kelompok senyawa yang disebut lipida, yang pada umumnya mempunyai sifat sama yaitu tidak larut dalam air. Dalam penanganan dan pengolahan bahan pangan, perhatian lebih banyak ditujukan pada suatu bagian dari lipida, yaitu trigliserida atau neutral fat. Pada umumnya untuk pengertian sehari-hari lemak merupakan bahan padat dalam suhu kamar, sedang minyak dalam bentuk cair dalam suhu kamar, tetapi keduanya terdiri dari molekul-milekul trigliserida. Lemak merupakan bahan padat pada suhu kamar, diantaranya disebabkan kandungannya yang tinggi akan asam lemak jenuh yang secara kimia tidak mengandung ikatan rangkap. Sehingga mempunyai titik lebur yang lebih tinggi. Contoh asam lemak jenuh yang terdapat di alam adalah asam palmitat dan asam stearat. Minyak merupakan bahan cair diantaranya disebabkan rendahnya kandungan asam lemak jenuh dan tingginya kandungan asam yang tak jenuh, yang memiliki satu atau lebih ikatan rangkap diantara atom-atom karbonnya, sehingga mempunyai titik lebur yang rendah. Lemak banyak digunakan dalam pembuatan roti atau kue dengan tujuan membantu mengempukkan produk akhir. Lemak yang bersifat demikian dikenal dengan istilah shortening. Disebut demikian karena dengan adanya lemak yang tidak larut dalam air itu, maka terbentuk massa serabut-serabut gluten dari gandum yang padat dank eras dapat dihalangi. Dengan demikian serabut-serabut gluten menjadi lebih pendek(shortening), sehingga produk akhirnya (roti ataukue) menjadi lebih empuk.
JENIS LEMAK DAN MINYAK
A.    Minyak Goreng
Minyak goreng berfungsi sebagai pengantar panas, penambah rasa gurih, dan penambah nilai kalori bahan pangan. Mutu minyak goreng ditentukan oleh titik asapnya, yaitu suhu pemanasan minyak sampai terbentuk akroleinyang tidak diinginkan dan dapat menimbulkan rasa gatal pada tenggorokan. Hidrasi gliserolakan membentuk aldehida tidak jenuh atauakrolein tersebut. Makin tinggi titik asap, makin baik mutu minyak goring itu. Titik asapa suatu minyak goreng tergantung dari kadar gliserolbebas. Lemak yang telah digunakan untuk titik asapnya akan turun, karena telah terjadi hidrolisis molekul lemak. Karena itu untuk menekan terjadinya hidrolisis, pemanasan lemak atau minyak sebaiknya dilakukan pada suhu tidak terlalu tinggi dari seharusnya. Pada umumnya suhu penggorengan adalah 177-221C.
B.    Mentega
Lemak dari suhu dapat dipisahkan darik omponen lain dengan baik melalui proses pengocokan atau churning. Dengan cara tersebut, secar mekanik fiim protein di dekelilingi globula lemak retak dan pecah, sehingga memungkinkan globula lemak menggumpal dan menyusup ke permukaan. Cara ini merupakan proses proses pemecahan emulsi minyak dalam air (o/w) dengan pengocokan. Mentega sendiri merupakan emulsi air dalam minyak dengan kira-kira 18% air terdispersi didalam 80% lemak dengan sejumlah kecil protein yang bertindak sebagai zat pengemulsi (emulsifier).
Lemak susu terdiri dari trigliserida-trigliserida butirodiolein, butiropalmitoolein, oleodipalmitin, dan sejumlah kecil triolein. Asam lemak butirat dan koproat dalam keadaan bebas akan menimbulkan bau dan rasa tidak enak. Mentega dapat dibuat dari lemak susu yang manis (swet cream) atau yang asam. Mentega dari lemak yang asam mempunyai cita rasa yang kuat. Lemak susu dapat dibiarkan menjadi asam secara spontan atau dapat diasamkan dengan penambahan pupukan murni bakteri asam laktat pada lemak susu yang manis yang telah dipasteurisasikan, sehingga memungkinkan terjadinya fermentasi.
C.   Margarine
Margarine merupakan pengganti mentega dengan rupa, bau, konsistensi, rasa, dan nilai gizi yang hampir sama. Margarine juga merupakan emulsi air dalam minyak, dengan persyaratan mengandung tidak kurang 80% lemak. Lemak yang digunakan dapat berasal dari lemak hewani atau lemak nabati. Lemak hewani yang biasa digunakan yaitu lemak babi (lara) dan lemak sapi oleo oil), sedangkan lemak nabati yang digunakan adalah minyak kelapa, minyaka kelapa sawit, minyak kedelai, dan minyak biji kapas. Karena minyak nabati umumnya berbentuk cair, maka harus dihidrogenasi lebih dahulu menjadi lemak padat, yang berarti margarine harus bersifat plastis, padat pada suhu ruang, agak keras pada suhu rendah, dan segera dapat mencair pada mulut.
Lemak yang akan digunakan dimurnikan lebih dahulu, kemudian dihidrogenasi sampai mendapat konsistensi yang diinginkan. Lemak diaduk, diemulsikan dengan susu skim yang telah dipasteurisasi, dan diinokulasi dengan bakteri yang sama seperti pembuatan mentega. Sesudah inokulasi, dibiarkan 12 – 24 jam sehingga terbentuk emulsi sempurna, kadang-kadang ditambahkan emulsifier seperti lesitin, gliserin, atau kuning telur. Bahan lain yang ditambahkan adalah garam, Na benzoate sebagai pengawet, dan vitamin A.
Ekstraksi Soxhlet
Soxhlet merupakan alat yang terdiri dari pengaduk atau granul anti-bumping, still pot (wadahpenyuling) bypass sidearm, thimble selulosa, extraction liquid, syphon arm inlet, syphon arm outlet, expansion adapter, condenser (pendingin), cooling water in, dan cooling water out. Soxhlet biasa digunakan dalam pengekstrasian lemak pada suatu bahan makanan. Metode soxhlet ini dipilih karena pelarut yang digunakan lebih sedikit (efesiensi bahan) dan larutan sari yang dialirkan melalui sifon tetap tinggal dalam labu, sehingga pelarut yang digunakan untuk mengekstrak sampel selalu baru dan meningkatkan laju ekstraksi. Waktu yang digunakan lebih cepat. Kerugian metode ini ialah pelarut yang digunakan harus mudah menguap dan hanya digunakan untuk ekstraksi senyawa yang tahan panas (Harper 1979).
Soxhlet merupakan Ekstraksi padat-cair digunakan untuk memisahkan analit yang terdapat pada padatan menggunkan pelarut organic. Padatan yang akan diekstrak dilembutkan terlebih dahulu dengan cara ditumbuk atau juga diiris-iris. Kemudian padatan yang telah halus dibungkus dengan kertas saring. Padatan yang terbungkkus kertas saring dimasukkan kedalam alat ekstraksi soxhlet. Pelarut organic dimasukkan kedalam labu alas bulat. Kemudian alat ektraksi soxhlet dirangkai dengan kondensor . Ekstraksi dilakukan dengan memanaskan pelarut organic sampai semua analitter ekstrak (Khamnidal.2009).
Prinsip soxhlet ialah ekstraksi menggunakan pelarut yang selalu baru yang umumnya sehingga terjadi ekstraksi kontiyu dengan jumlah pelarut konstan dengan adanya pendingin balik. Penetapan kadar lemak dengan metode soxhlet ini dilakukan dengan cara mengeluarkan lemak dari bahandengan pelarut anhydrous. Pelarut anhydrous merupakan pelarut yang benar-benar bebas air. Hal tersebut bertujuan supaya bahan-bahan yang larut air tidak terekstrak dan terhitung sebagai lemak serta keaktifan pelarut tersebut tidak berkurang. Pelarut yang biasa digunakan adalah pelarut hexana (Darmasih 1997).
Sampel yang sudah dihaluskan, ditimbang dan kemudian dibungkus dengan kertas saring atau ditempatkan dalam thimble (selongsong tempat sampel), di atas sample ditutup dengan kapas. Kertas saring ini berfungsi untuk menjaga tidak tercampurnya bahan dengan pelarut lemak secara langsung. Pelarut dan bahan tidak dibiarkan tercampur secara langsung agar bahan-bahan lain seperti fosfolipid, sterol, asam lemak bebas, pigmen karotenoid, klorofil dan lain-lain tidak ikut terekstrak sebagai lemak. Hal ini dilakukan agar hasil akhir dari penentuan kadar lemak ini lebih akurat. Selanjutnya labu kosong diisi butir batu didih. Fungsi batu didih ialah untuk meratakan panas. Setelah dikeringkan dan didinginkan, labu diisi dengan pelarut anhydrous (Lucas 1949).
Thimble yang sudah terisi sampel dimasukan ke dalam soxhlet. Alat ekstraksi soxhlet disambungkan dengan labu lemak yang telah diisi pelarut lemak dan ditempatkan pada alat pemanas listrik serta kondensor. Alat pendingin disambungkan dengan soxhlet. Air untuk pendingin dijalankan dan alat ekstraksi lemak mulai dipanaskan. Penentuan kadar lemak pada bahan tersebut dilakukan selama beberapa jam tergantung dari jumlah emak yang terkandung dalam bahan. Semakin banyak kadungan lemak yang terdapat pada bahan, semakin lama proses ekstraksi lemak dilakukan (Darmasih 1997).
Ketika pelarut dididihkan, uapnya naik melewati soxhlet menuju ke pipa pendingin. Air dingin yang dialirkan melewati bagian luar kondenser mengembunkan uap pelarut sehingga kembali ke fasecair, kemudian menetes ke thimble. Pelarut melarutkan lemak dalam thimble, larutan sari ini terkumpul dalam thimble dan bila volumenya telah mencukupi, sari akan dialirkan lewat sifonmenuju labu. Proses dari pengembunan hingga pengaliran disebut sebagai refluks. Proses ekstraksilemak kasar dilakukan selama 6 jam. Setelah proses ekstraksi selesai, pelarut dan lemak dipisahkan melalui proses penyulingan dan dikeringkan (Darmasih 1997).
Prinsip soxhlet ialah ekstraksi menggunakan pelarut yang selalu baru yang umumnya sehinggaterjadi ekstraksi kontiyu dengan jumlah pelarut konstan dengan adanya pendingin balik.
Soklet terdiri dari:
1.    Pengaduk / granul anti-bumping                    
2.    Still pot (wadah penyuling)
3.    Bypass sidearm
4.    Thimble selulosa
5.    Extraction liquid
6.    Syphon arm inlet
7.    Syphon arm outlet
8.    Expansion adapter
9.    Condenser (pendingin)
10.  Cooling water in
11.  Cooling water out                                           
Keuntungan dan Kerugian :
Metode soxhlet ini dipilih karena pelarut yang digunakan lebih sedikit (efesiensi bahan) dan larutan sari yang dialirkan melalui sifon tetap tinggal dalam labu, sehingga pelarut yang digunakan untuk mengekstrak sampel selalu baru dan meningkatkan laju ekstraksi. Waktu yang digunakan lebih cepat.
Kerugian metode ini ialah pelarut yang digunakan harus mudah menguap dan hanya digunakan untuk ekstraksi senyawa yang tahan panas.
Massa jenis (densitas) hasil ekstraksi dihitung dengan mennggunakan persamaan:
D = M/V
Ket: D = densitas (gr/lt)
       M = Massa cairan (gr)
       V = Volume cairan (lt)







Senin, 17 September 2012

PEMERIKSAAN KARBOHIDRAT METODE LUFF SCHOORL


Gula reduksi adalah gula yang memiliki gugus aldehid (aldosa) atau keton (ketosa) bebas (Makfoeld dkk, 2002). Aldosa mudah teroksidasi menjadi asam aldonat, sedangkan ketosa hanya dapat bereaksi dalam suasana basa (Fennema, 1996). Secara umum, reaksi tersebut digunakan dalam penentuan gula secara kuantitatif. Penggunaan larutan Fehling merupakan metode pertama dalam penentuan gula secara kuantitatif. Larutan fehling merupakan larutan alkalin yang mengandung tembaga (II) yang mengoksidasi aldosa menjadi aldonat dan dalam prosesnya akan tereduksi menjadi tembaga (I), yaitu Cu2O yang berwarna merah bata dan mengendap. Maltosa dan laktosa adalah contoh gula reduksi.
Reaksi antara gugus karbonil gula pereduksi dengan gugus amino protein disebut reaksi maillard yang menghasilkan warna coklat pada bahan, yang dikehendaki atau malah menjadi pertanda penurunan mutu. Warna coklat pada penggorengan ubi jalar dan singkong, serta pencoklatan pencoklatan yang indah dari berbagai roti adalah warna yang dikehendaki (Winarno, 2002). Dengan kata lain, dalam kimia pangan gula reduksi berkontribusi membentuk warna coklat apabila berikatan dengan asam amino.
Gula reduksi adalah gula yang mempunyai kemampuan untuk mereduksi. Hal ini dikarenakan adanya gugus aldehid atau keton bebas. Senyawa-senyawa yang mengoksidasi atau bersifat reduktor adalah logam-logam oksidator seperti Cu (II). Contoh gula yang termasuk gula reduksi adalah glukosa, manosa, fruktosa, laktosa, maltosa, dan lain-lain. Sedangkan yang termasuk dalam gula non reduksi adalah sukrosa (Team Laboratorium Kimia UMM, 2008).
Salah satu contoh dari gula reduksi adalah galaktosa. Galaktosa merupakan gula yang tidak ditemui di alam bebas, tetapi merupakan hasil hidrolisis dari gula susu (laktosa) melalui proses metabolisme akan diolah menjadi glukosa yang dapat memasuki siklus kreb’s untuk diproses menjadi energi. Galaktosa merupakan komponen dari Cerebrosida, yaitu turunan lemak yang ditemukan pada otak dan jaringan saraf (Budiyanto, 2002).
Sedangkan salah satu ontoh dari gula reduksi adalah Sukrosa. Sukrosa adalah senyawa yang dalam kehidupan sehari-hari dikenal sebagai gula dan dihasilkan dalam tanaman dengan jalan mengkondensasikan glukosa dan fruktosa. Sukrosa didapatkan dalam sayuran dan buah-buahan, beberapa diantaranya seperti tebu dan bit gula mengandung sukrosa dalam jumlah yang relatif besar. Dari tebu dan bit gula itulah gula diekstraksi secara komersial (Gaman, 1992).
Karbohidrat secara sederhana dapat diartikan suatu senyawa yang terdiri dari molekul-molekul karbon (C), hidrogen (H) dan oksigen (O) atau karbon dan hidrat (H2O) sehingga dinamakan karbo-hidrat. Dalam tumbuhan senyawa ini dibentuk melaui proses fotosintesis antara air (H2O) dengan karbondioksida (CO2) dengan bantuan sinra matahari (UV) menghasilkan senyawa sakarida dengan rumus (CH2O)n.
Ada banyak fungsi dari karbohidrat dalam penerapannya di industri pangan, farmasi maupun dalam kehidupan manusia sehari-hari. Diantara fungsi dan kegunaan itu ialah: Sebagai sumber kalori atau energy, sebagai bahan pemanis dan pengawet, Sebagai bahan pengisi dan pembentuk, sebagai bahan penstabil, sebagai sumber flavor (karamel), dan sebagai sumber serat (Winarno 2007).
Karbohidrat dapat digolongan menjadi dua macam yaitu karbohidrat sederhana dengan karbohidrat kompleks atau dapat pula menjadi tiga macam, yaitu monosakarida, disakarida, dan polisakarida. Gula adalah suatu karbohidrat sederhana yang menjadi sumber energi dan merupakan oligosakarida, polimer.
Pengukuran karbohidrat yang merupakan gula pereduksi dengan metode Luff Schoorl ini didasarkan pada reaksi sebagai berikut :
R-CHO + 2 Cu2+ R-COOH + Cu2O
2 Cu2+ + 4 I- Cu2I2 + I2
2 S2O32- + I2 S4O62- + 2 I-
Monosakarida akan mereduksikan CuO dalam larutan Luff menjadi Cu2O. Kelebihan CuO akan direduksikan dengan KI berlebih, sehingga dilepaskan I2. I2 yang dibebaskan tersebut dititrasi dengan larutan Na2S2O3. Pada dasarnya prinsip metode analisa yang digunakan adalah Iodometri karena kita akan menganalisa I2 yang bebas untuk dijadikan dasar penetapan kadar. Dimana proses iodometri adalah proses titrasi terhadap iodium (I2) bebas dalam larutan. Apabila terdapat zat oksidator kuat (misal H2SO4) dalam larutannya yang bersifat netral atau sedikit asam penambahan ion iodida berlebih akan membuat zat oksidator tersebut tereduksi dan membebaskan I2 yang setara jumlahnya dengan dengan banyaknya oksidator (Winarno 2007).
I2 bebas ini selanjutnya akan dititrasi dengan larutan standar Na2S2O3 sehinga I2 akan membentuk kompleks iod-amilum yang tidak larut dalam air. Oleh karena itu, jika dalam suatu titrasi membutuhkan indikator amilum, maka penambahan amilum sebelum titik ekivalen.
Metode Luff Schoorl ini baik digunakan untuk menentukan kadar karbohidrat yang berukuran sedang. Dalam penelitian M.Verhaart dinyatakan bahwa metode Luff Schoorl merupakan metode tebaik untuk mengukur kadar karbohidrat dengan tingkat kesalahan sebesar 10%. Pada metode Luff Schoorl terdapat dua cara pengukuran yaitu dengan penentuan Cu tereduksi dengan I2 dan menggunakan prosedur Lae-Eynon (Anonim 2009).
Metode Luff Schoorl mempunyai kelemahan yang terutama disebabkan oleh komposisi yang konstan. Hal ini diketahui dari penelitian A.M Maiden yang menjelaskan bahwa hasil pengukuran yang diperoleh dibedakan oleh pebuatan reagen yang berbeda.
Gula reduksi adalah gula yang mempunyai kemampuan untuk mereduksi. Hal ini dikarenakan adanya gugus aldehid atau keton bebas. Senyawa-senyawa yang mengoksidasi atau bersifat reduktor adalah logam-logam oksidator seperti Cu (II). Contoh gula yang termasuk gula reduksi adalah glukosa, manosa, fruktosa, laktosa, maltosa, dan lain-lain. Sedangkan yang termasuk dalam gula non reduksi adalah sukrosa (Team Laboratorium Kimia UMM, 2008).Salah satu contoh dari gula reduksi adalah galaktosa. Galaktosa merupakan gula yang tidak ditemui di alam bebas, tetapi merupakan hasil hidrolisis dari gula susu (laktosa) melalui proses metabolisme akan diolah menjadi glukosa yang dapat memasuki siklus kreb’s untuk diproses menjadi energi. Galaktosa merupakan komponen dari Cerebrosida, yaitu turunan lemak yang ditemukan pada otak dan jaringan saraf (Budiyanto, 2002).
Gula invert termasuk golongan gula reduksi karena dapat mereduksi ion tembaga dalamlarutan alkali.Salah satu yang termasuk gula reduksi adalah gula invert. Gula invertdihasilkan dari hidrolisis sukrosa menghasilkan glukosa dan fruktosa. Sukrosabereaksi bersama asam dalam campuran air dengan bantuan enzim invertase.



 Struktur glukosa (rotasi +52.7°)                                Struktur fruktosa (rotasi = -92°)
Description: https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjfwV38x2BJJUcdxvG-wijaVGke527PJGXHTMSkaG8X7LjGSMVffjvOiPsJNJyhQcSxOznoozNPR9x6K0soPtJf8FAu5eACK6peVJoUtSTu2rWanLF_qtt63ScShw9QwM69xxSYd_VR7G0/s200/1bc22d2cda15689fb09a4402abd15006.gif                                  Description: https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjMNc3GST5nGWzWg8NeT6oWu9jkcfQjUPdnPEgA61ipafcsdwQUTi2JlZleh9XVz0RdFmLf3crVipdgDhC0wIPEucohso1SM8LlA-3FGplezHJWmeh1DTkhWq4cTobzIeaBrBq0WuxgdoQ/s200/fructosa.png
            Analisis dengan Metode Luff-Schoorl. Prinsip analisis dengan Metode Luff-Schoorl yaitu reduksi Cu2+ menjadi Cu 1+ oleh monosakarida. Monosakarida bebas akan mereduksi larutan basa dari garam logam menjadi bentuk oksida atau bentuk bebasnya. Kelebihan Cu2+ yang tidak tereduksi kemudian dikuantifikasi dengan titrasi iodometri (SNI 01-2891-1992).
Reaksi yang terjadi:
Karbohidrat kompleks → gula sederhana (gula pereduksi)
Gula pereduksi+ 2 Cu2+→ Cu2O(s)
2 Cu2+ (kelebihan) + 4 I-→ 2 CuI2 → 2 CuI- + I2
I2 + 2S2O32-→ 2 I- + S4O6 2-
Osborne dan Voogt (1978) mengatakan bahwa Metode Luff-Schoorl dapat diaplikasikan untuk produk pangan yang mengandung gula dengan bobot molekuler yang rendah dan pati alami atau modifikasi.
         Kemampuan mereduksi dari gugus aldehid dan keton digunakan sebagai landasan dalam mengkuantitasi gula sederhana yang terbentuk. Tetapi reaksi reduksi antara gula dan tembaga sulfat sepertinya tidak stoikiometris dan sangat tergantung pada kondisi reaksi. Faktor utama yang mempengaruhi reaksi adalah waktu pemanasan dan kekuatan reagen. Penggunaan luas dari metode ini dalam analisis gula adalah berkat kesabaran para ahli kimia yang memeriksa sifat empiris dari reaksi dan oleh karena itu dapat menghasilkan reaksi yang reprodusibel dan akurat (Southgate 1976).